Izoflawony – skutki u drobiu


Magdalena Gajęcka, Maciej Gajęcki


Izoflawony są fitoestrogenami, z czego można by wnioskować, że będą działać korzystnie na organizmy drobiu. Istnieją jednak doniesienia o negatywnych skutkach ich pobierania. Niniejszy przegląd podsumowuje aktualną wiedzę na temat metabolizmu izoflawonów (w tym wpływu mikrobioty jelitowej, metabolizmu fazy I i II), a także dystrybucji izoflawonów i ich metabolitów w tkankach. Ponadto dokonano przeglądu opublikowanych badań dotyczących wpływu izoflawonów na drób.

Pismiennictwo:

1.      Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Foda, M.A.; Noreldin, A.E.; Khafaga, A.F.; El-Sabrout, K.; Elwan, H.A.M.; Tiwari, R.; Yatoo, M.I.; Michalak, I.; Di Cerbo, A.; Dhama, K. Potential role of important nutraceuticals in poultry performance and health - A comprehensive review. Res. Vet. Sci. 2021, 137, 9-29. https://doi.org/10.1016/j.rvsc.2021.04.009

2.      Azzam, M.M.; Shou-qun, J.; Jia-li, C.; Xia-jing, L.; Zhong-yong, G.; Qiu-li, F.; Yi-bing, W.; Long, L.; Zong-yong, J. Effect of Soybean Isoflavones on Growth Performance, Immune Function, and Viral Protein 5 mRNA Expression in Broiler Chickens Challenged with Infectious Bursal Disease Virus. Animals 2019, 9, 247. doi:10.3390/ani9050247

3.      Chang, H.H.-S.; Robinson, A.R.; Common, R.H. Excretion of Radioactive Daidzein and Equol as Monosulfates and Disulfates in the Urine of the Laying Hen. Can. J. Biochem. 1975, 53, 223-230.

4.      Dai, H.; Lv, Z.; Huang, Z.; Ye, N.; Li, S.; Jiang, J.; Cheng, Y.; Shi, F. Dietary hawthorn-leaves flavonoids improve ovarian function and liver lipid metabolism in aged breeder hens. Poultry Sci. 2021, 100, 101499. https://doi.org/10.1016/j.psj.2021.101499

5.      Gou, Z.Y.; Cui, X.Y.; Li, L.; Fan, Q.L.; Lin, X.J.; Wang, Y.B.; Jiang, Z.Y.; Jiang, S.Q. Effects of dietary incorporation of linseed oil with soybeanisoflavone on fatty acid profiles and lipid metabolism-related geneexpression in breast muscle of chickens. Animal 2020, 14(11), 2414-2422. doi:10.1017/S1751731120001020

6.      Gauang-Ming, J. Effect of Soybean Isoflavones on the Distribution of LymphocyteIn Small Intestine Mucosal of ducks. Chinese Agric. Sci. Bull. 2011, 27(26), 69-72.

7.      Huang, Z.; Jin, S.; Lv, Z. Dietary Genistein Supplementation Alters mRNA Expression Profile and Alternative Splicing Signature in the Thymus of Chicks with Lipopolysaccharide Challenge. Poultry Sci. 2021, 101561, in press. https://doi.org/10.1016/j.psj.2021.101561

8.      Hubbard, L.E.; Givens, C.E.; Griffin, D.W.; Iwanowicz, L.R.; Meyer, M.T.; Kolpin, D.W. Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. Sci. Total Environ. 2020, 735, 139459. https://doi.org/10.1016/j.scitotenv.2020.139459

9.      Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. doi:10.3390/molecules24061076

10.  Kulling, S.E.; Honig, D.M.; Simat, T.J.; Metzler, M. Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein. J. Agric. Food Chem. 2000, 48, 4963-4972.

11.  Lourenco, J.M.; Rothrock, Jr. M.J.; Sanad, Y.M.; Callaway, T.R. The Effects of Feeding a Soybean-Based or a Soy-Free Diet on the Gut Microbiome of Pasture-Raised Chickens Throughout Their Lifecycle. Front. Sustain. Food Syst., 2019, 3(36), 1-12. https://doi.org/10.3389/fsufs.2019.00036

12.  Markovica, R.; Baltica, M.Z.; Pavlovica, M.; Glisica, M.; Radulovica, S.; Djordjevicb, V.; Sefera, D. Isoflavones - from biotechnology to functional foods. Procedia Food Sci. 2015, 5, 176-179. doi: 10.1016/j.profoo.2015.09.050

13.  Pierzgalski, A.; Bryła, M.; Kanabus, J.; Modrzewska, M.; Podolska, G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins 2021, 13, 768. https://doi.org/10.3390/toxins13110768

14.  Rochester, J.R.; Klasing, K.C.; Stevenson, L.; Denison, M.S.; Berry, W.; Millam, J.R. Dietary red clover (Trifolium pratense) induces oviduct growth and decreases ovary and testes growth in Japanese quail chicks. Reprod. Toxicol. 2009, 1(27), 63-71. https://doi.org/10.1016/j.reprotox.2008.11.056

15.  Saitoh, S.; Sato, T.; Harada, H.; Matsuda, T. Biotransformation of soy isoflavone-glycosides in laying hens: Intestinal absorption and preferential accumulation into egg yolk of equol, a more estrogenic metabolite of daidzein. Biochim. Biophys. Acta Gen. Subj. 2004, 1674, 122-130.

16.  Sohn, S.I.; Pandian, S.; Oh, Y.J.; Kang, H.J.; Cho, W.S.; Cho, Y.S. Metabolic Engineering of Isoflavones: An Updated Overview. Front. Plant Sci. 2021, 12, 670103. doi: 10.3389/fpls.2021.670103

17.  Yamagata, K.; Yamori, Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic

18.  Syndrome. Molecules 2021, 26, 5863. https://doi.org/10.3390/molecules26195863

Wstecz

Partnerzy

Zakup czasopisma