Charakterystyka jajowodu ptaków, cz. III. Regulacja rozwoju, funkcjonowania i przebudowy jajowodu


Anna Hrabia


Tworzenie jaja w jajowodzie samic ptaków to szereg skoordynowanych procesów związanych z syntezą i wydzielaniem składników białka i skorupy jaja oraz z transportem i znoszeniem jaja. W kontrolę tych procesów zaangażowane są liczne geny, hormony i ich receptory oraz inne cząsteczki o aktywności fizjologicznej. Nadrzędną rolę odgrywają hormony steroidowe, głównie estrogeny.


Piśmiennictwo:

1.           Asbóth, G., Todd, H., Tóth, M., Hertelendy, F., 1985. PGE2 binding, synthesis, and distribution in hen oviduct. Am. J. Physiol. 248 (1 Pt 1), E80–88.

2.           Brzezińska, E., Rzasa, J., Ewy, Z., 1967. Plasma aminopeptidase (oxytocinase) activity during oviposition in the hen. Bull. Acad. Pol. Sci. Biol. 15 (3), 143–146.

3.           Dougherty, D.C., Sanders, M.M., 2005. Estrogen action: revitalization of the chick oviduct model. Trends Endocrinol. Metab. 16, 414–419.

4.           Donoghue, D.J., Campbell, R.M., Scanes, C.G., 1990. Effect of biosynthetic chicken growth hormone on egg production in White Leghorn hens. Poult. Sci. 69, 1818–1821.

5.           Dunn, I.C., Wilson, P.W., Lu, Z., Bain, M.M., Crossan, C.L., Talbot, R.T., Waddington, D., 2009. New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens. Gen. Comp. Endocrinol. 163 (1-2), 225–232.

6.           Elhamouly, M., Isobe, N., Yoshimura, Y., 2017. Expression and localization of cyclooxygenases in the oviduct of laying hens during the ovulatory cycle. Theriogenology 101, 1–7.

7.           Fu, Z., Kubo, T., Noguchi, T., Kato, H., 2001. Developmental changes in the mRNA levels of IGF-I and its related genes in the reproductive organs of Japanese quail (Coturnix coturnix japonica). Growth Horm. IGF Res. 11, 24–33.

8.           González-Morán, M.G., 2015. Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development. Acta Histochem. 117 (8), 681–687.

9.           González-Morán, M.G., 2016. Changes in progesterone receptor isoforms expression and in the morphology of the oviduct magnum of mature laying and aged nonlaying hens. Biochem. Biophys. Res. Commun. 478 (2), 999–1005.

10.         Ha, Y., Tsukada, A., Saito, N., Shimada, K., 2004. Changes in mRNA expression of MMP-2 in the Mullerian duct of chicken embryo. Gen. Comp. Endocrinol. 139, 131–136.

11.         Hansen, K.K., Kittok, R.J., Sarath, G., Toombs, C.F., Caceres, N., Beck, M.M., 2003. Estrogen receptor-alpha populations change with age in commercial laying hens. Poult. Sci. 82 (10), 1624–1629.

12.         Heryanto, B., Yoshimura, Y., Tamura, T., Okamoto, T., 1997. Involvement of apoptosis and lysosomal hydrolase activity in the oviducal regression during induced molting in chickens: a cytochemical study for end labeling of fragmented DNA and acid phosphatase. Poult. Sci. 76 (1), 67–72.

13.         Hiyama, G., Mizushima, S., Matsuzaki, M., Ichikawa, Y., Kansaku, N., Sasanami, T., 2016. Expression of prolactin receptor on the surface of quail spermatozoa. J. Poult. Sci. 53, 157–164.

14.         Hora, J., Gosse, B., Rasmussen, K., Spelsberg, T.C., 1986. Estrogen regulation of the biological activity of the avian oviduct progesterone receptor and its ability to induce avidin. Endocrinology 119 (3), 1118–1125.

15.         Hrabia, A., 2015. Growth hormone production and role in the reproductive system of female chicken. Gen. Comp. Endocrinol. 220, 112–118.

16.         Hrabia, A., Leśniak-Walentyn, A., Sechman, A., Gertler, A., 2014b. Chicken oviduct the target tissue for growth hormone action: effect on cell proliferation and apoptosis and on the gene expression of some oviduct-specific proteins. Cell Tissue Res. 357, 363–372.

17.         Hrabia, A., Socha, J.K., Saito, N., Grzesiak, M., Sechman, A., 2020. Aquaporin 4 in the chicken oviduct during a pause in laying induced by food deprivation. C. R. Biol. 343 (1), 89-99.

18.         Isola, J.J., 1990. Distribution of estrogen and progesterone receptors and steroid-regulated gene products in the chick oviduct. Mol. Cell. Endocrinol. 69 (2-3), 235–243.

19.         Jeong, W., Lim, W., Ahn, S.E., Lim, C.H., Lee, J.Y., Bae, S.M., Kim, J., Bazer, F.W., Song, G., 2013. Recrudescence mechanisms and gene expression profile of the reproductive tracts from chickens during the molting period. PLoS One 8 (10), e76784.

20.         Jeong, W., Bae, H., Lim, W., Song, G., 2017b. Dicer1, AGO3, and AGO4 microRNA machinery genes are differentially expressed in developing female reproductive organs and overexpressed in cancerous ovaries of chickens. J. Anim. Sci. 95 (11), 4857–4868.

21.         Jeong, W., Bae, H., Lim, W., Bazer, F.W., Song, G., 2018. RAS-related protein 1: an estrogen-responsive gene involved in development and molting-mediated regeneration of the female reproductive tract in chickens. Animal 12 (8), 1594–1601.

22.         Joensuu, T.K., 1990. Chick oviduct differentiation. The effect of estrogen and progesterone on the expression of progesterone receptor. Cell Differ. Dev. 30, 207–218.

23.         Jung, J.G., Lim, W., Park, T.S., Kim, J.N., Han, B.K., Song, G., Han, J.Y., 2011. Structural and histological characterization of oviductal magnum and lectin-binding patterns in Gallus domesticus. Reprod. Biol. Endocrinol. 9, 62.

24.         Kawashima, M., Takahashi, T., Kondo, S., Yasuoka, T., Ogawa, H., Tanaka, K., 1999. Identification of an androgen receptor within the uterus of the domestic fowl. Poult. Sci. 78 (1), 107–113.

25.         Khan, S., Wu, S.B., Roberts, J., 2019. RNA-sequencing analysis of shell gland shows differences in gene expression profile at two time-points of eggshell formation in laying chickens. BMC Genomics. 20 (1), 89.

26.         Kida, S., Iwaki, M., Nakamura, A., Miura, Y., Takenaka, A., Takahashi, S., Noguchi, T., 1994. Insulin-like growth factor-I messenger RNA content in the oviduct of Japanese quail (Coturnix coturnix japonica): changes during growth and development or after estrogen administration. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 109, 191–204.

27.         Kida, S., Miura, Y., Takenaka, A., Takahashi, S., Noguchi, T., 1995. Effects of insulin-like growth factor-I, estrogen, glucocorticoid, and transferrin on the mRNA contents of ovalbumin and conalbumin in primary cultures of quail (Coturnix coturnix japonica) oviduct cells. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 110, 157–164.

28.         Kim, J., Lim, W., Bazer, F.W., Song, G., 2017. Rapid Communication: MicroRNA co-expression network reveals apoptosis in the reproductive tract during molting in laying hens. J. Anim. Sci. 95 (11), 5100–5104.

29.         Leśniak-Walentyn, A., Hrabia A., 2016a. Expression and localization of matrix metalloproteinases (MMP-2, -7, -9) and their tissue inhibitors (TIMP-2, -3) in the chicken oviduct during maturation. Cell Tissue Res. 364 (1), 185–197.

30.         Leśniak-Walentyn, A., Hrabia, A., 2016b. Involvement of matrix metalloproteinases (MMP-2, -7, -9) and their tissue inhibitors (TIMP-2, -3) in the chicken oviduct regression and recrudescence. Cell Tissue Res. 366 (2), 443–454.

31.         Leśniak-Walentyn, A., Hrabia, A., 2017. Expression and localization of matrix metalloproteinases (MMP-2, -7, -9) and their tissue inhibitors (TIMP-2, -3) in the chicken oviduct during pause in laying induced by tamoxifen. Theriogenology 88, 50–60.

32.         Li, D., Tsutsui, K., Muneoka, Y., Minakata, H., Nomoto, K., 1996. An oviposition-inducing peptide: isolation, localization, and function of avian galanin in the quail oviduct. Endocrinology 137 (5), 1618–1626.

33.         Lim, W., Jeong, W., Kim, J.H., Lee, J.Y., Kim, J., Bazer, F.W., Han, J.Y., Song, G., 2011. Differential expression of alpha 2 macroglobulin in response to diethylstilbestrol and in ovarian carcinomas in chickens. Reprod. Biol. Endocrinol. 9, 137.

34.         Luna, M., Martínez-Moreno, C.G., Ahumada-Solórzano, M.S., Harvey, S., Carranza, M., Arámburo, C., 2014, Extrapituitary growth hormone in the chicken reproductive system. Gen. Comp. Endocrinol. 203, 60–68.

35.         Mika, M., Rzasa, J., Ewy, Z., 1987. Interaction of progesterone, estradiol, and testosterone in the regulation of growth and development of the chick oviduct. Folia Biol. (Krakow). 35 (1-2), 85–94.

36.         Niezgoda, J., Rzasa, J., Ewy, Z., 1973. Changes in blood vasotocin activity during oviposition in the hen. J. Reprod. Fertil. 35 (3), 505–509.

37.         Palmiter, R.D., Haines, M.E., 1973. Regulation of protein synthesis in chick oviduct. IV, Role of testosterone. J. Biol. Chem. 248 (6), 2107–2116.

38.         Rząsa, J., 1978. Effects of arginine vasotocin and prostaglandin E1 on the hen uterus. Prostaglandins 16 (3), 357–372.

39.         Rzasa, J., Ewy, Z., 1970. Effect of vasotocin and oxytocin on oviposition in the hen. J. Reprod. Fertil. 21 (3), 549–550.

40.         Rzasa, J., Paczoska-Eliasiewicz, H., 1989. Effect of indomethacin and vasotocin on oviposition in the hen (Gallus domesticus). Acta Physiol. Pol. 40 (1), 111–115.

41.         Saito, N., Shimada, K., Koike, T.I., 1987. Interrelationship between arginine vasotocin, prostaglandin, and uterine contractility in the control of oviposition in the hen (Gallus domesticus). Gen. Comp. Endocrinol. 67 (3), 342–347.

42.         Shimada, K., Asai, I., 1979. Effects of prostaglandin F2alpha and indomethacin on uterine contraction in hens. Biol. Reprod. 21, 523–527.

43.         Shimada, K., Saito, N., Itogawa, K., Koike, T.I., 1987. Changes in plasma concentrations of arginine vasotocin after intrauterine injections of prostaglandin F-2 alpha and acetylcholine at various times during the oviposition cycle of the domestic hen (Gallus domesticus). J. Reprod. Fertil. 80, 143–150.

44.         Socha, J.K., Sechman, A., Mika, M., Hrabia, A., 2017. Effect of growth hormone on steroid concentrations and mRNA expression of their receptor, and selected egg-specific protein genes in the chicken oviduct during pause in laying induced by fasting. Domest. Anim. Endocrinol. 61, 1–10.

45.         Socha, J.K., Hrabia, A., 2018. Alterations in apoptotic markers and egg-specific protein gene expression in the chicken oviduct during pause in laying induced by tamoxifen. Theriogenology 105, 126–134.

46.         Socha, J.K., Saito, N., Wolak, D., Sechman, A., Hrabia, A., 2018. Expression of aquaporin 4 in the chicken oviduct following tamoxifen treatment. Reprod. Domest. Anim. 53 (6), 1339–1346.

47.         Song, G., Seo, H.W., Choi, J.W., Rengaraj, D., Kim, T.M., Lee, B.R., Kim, Y.M., Yun, T.W., Jeong, J.W., Han, J.Y., 2011. Discovery of candidate genes and pathways regulating oviduct development in chickens. Biol. Reprod. 85 (2), 306–314.

48.         Srivastava, R., Cornett, L.E., Chaturvedi, C.M., 2010. Age-dependent expression of AVT and its oxytocic-like receptor VT3 in the shell gland of Japanese quail, Coturnix coturnix japonica. Gen. Comp. Endocrinol. 165 (1), 47–52.

49.         Srivastava, R., Cornett, L.E., Chaturvedi, C.M., 2018. Impact of estrogen and photoperiod on arginine vasotocin and VT3 receptor expression in the shell gland of quail. Front. Biosci. (Schol Ed). 10, 372–385.

50.         Syvala, H., Vienonen, A., Ylikomi, T., Bläuer, M., Zhuang, Y.H., Tuohimaa, P., 1997. Expression of the chicken progesterone receptor forms A and B is differentially regulated by estrogen in vivo. Biochem. Biophys. Res. Commun. 231, 573–576.

51.         Tora, L., Gronemeyer, H., Turcotte, B., Gaub, M.P., Chambon, P., 1988. The N-terminal region ofthe chicken progesterone receptor specifies target gene activation. Nature 333, 185–188.

52.         Tsutsui, K., Li, D., Ukena, K., Kikuchi, M., Ishii, S., 1998. Developmental changes in galanin receptors in the quail oviduct and the effect of ovarian sex steroids on galanin receptor induction. Endocrinology 139 (10), 4230–4236.

53.         Yang, C., Lim, W., Bae, H., Song, G., 2016. Aquaporin 3 is regulated by estrogen in the chicken oviduct and is involved in progression of epithelial cell-derived ovarian carcinomas. Domest. Anim. Endocrinol. 55, 97–106.

54.         Yin, L., Yu, L., Zhang, L., Ran, J., Li, J., Yang, C., Jiang, X., Du, H., Hu, X., Liu, Y., 2019. Transcriptome analysis reveals differentially expressed genes and pathways for oviduct development and defense in prelaying and laying hens. Am. J. Reprod. Immunol. 82 (3), e13159.

55.         Yin, Z., Lian, L., Zhu, F., Zhang, Z.H., Hincke, M., Yang, N., Hou, Z.C., 2020. The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics 112 (1), 243–251.

56.         Yoshimura, Y., Bahr, J.M., 1991. Localization of progesterone receptors in the shell gland of laying and nonlaying chickens. Poult. Sci. 70, 1246–1251.

57.         Yoshimura, Y., Nagano, K., Subedi, K., Kaiya, H., 2005. Identification of immunoreactive ghrelin and its mRNA in the oviduct of laying Japanese quail, Coturnix japonica. J. Poult. Sci. 42, 291–300.

58.         Zaniboni, L., Bakst, M.R., 2004. Localization of aquaporins in the sperm storage tubules in the turkey oviduct. Poult. Sci. 83 (7), 1209–1212.

Wstecz

Partnerzy

Zakup czasopisma