Chityna – czynnik antyżywieniowy czy antydrobnoustrojowy?
Bartosz Kierończyk, Zuzanna Mikołajczak, Mateusz Rawski, Joanna Kowalska, Damian Józefiak
Chityna stanowi drugi po celulozie najczęściej występujący polisacharyd w przyrodzie. Wchodzi ona w skład m.in. egzoszkieletu owadów, pajęczaków, skorupiaków, muszli mięczaków czy ścian komórkowych grzybów. Dotychczas w żywieniu drobiu skutecznie stosowano chitozan, który powstaje dzięki deacetylacji chityny (Świątkiewicz i in., 2014). Z powodu wprowadzania zmian w Rozporządzeniu Parlamentu Europejskiego i Rady (WE) nr 999/2001 dotyczących możliwości wdrażania materiałów paszowych wytworzonych z biomasy bezkręgowców w dietach zwierząt nieprzeżuwających (aneks IV) rośnie zainteresowanie tym polimerem.
Piśmiennictwo:
Benzertiha A, Kierończyk B, Rawski M, Mikołajczak Z, Urbański A, Nogowski L, et al. Insect fat in animal nutrition: A review. Ann Anim Sci 2020. https://doi.org/10.2478/aoas-2020-0076.
Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F, Chiariotti L, et al. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep 2017;7:1–11. https://doi.org/10.1038/s41598-017-16560-6.
Boulos S, Tännler A, Nyström L. Nitrogen-to-protein conversion factors for edible insects on the swiss market: T. molitor, A. domesticus, and L. migratoria. Front Nutr 2020;7:89.
Bovera F, Loponte R, Pero ME, Cutrignelli MI, Calabrò S, Musco N, et al. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res Vet Sci 2018;120:86–93. https://doi.org/10.1016/j.rvsc.2018.09.006.
Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, et al. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br Poult Sci 2015;56:569–75. https://doi.org/10.1080/00071668.2015.1080815.
Cutrignelli MI, Messina M, Tulli F, Randazzi B, Olivotto I, Gasco L, et al. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res Vet Sci 2018;117:209–15. https://doi.org/10.1016/j.rvsc.2017.12.020.
Gariglio M, Dabbou S, Biasato I, Capucchio MT, Colombino E, Hernández F, et al. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. J Anim Sci Biotechnol 2019;10:1–10. https://doi.org/10.1186/s40104-019-0344-7.
El Ghaouth A, Arul J, Asselin A, Benhamou N. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res 1992;96:769–79.
Ghormade V, Pathan EK, Deshpande M V. Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 2017;104:1415–21.
Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol 2016;48:40–50.
Han BK, Lee WJ, Jo DH. Chitinolytic enzymes from the gizzard and the chyme of the broiler (Gallus gallus L.). Biotechnol Lett 1997;19:981–4.
Hirano S, Itakura C, Seino H, Akiyama Y, Nonaka I, Kanbara N, et al. Chitosan as an ingredient for domestic animal feeds. J Agric Food Chem 1990;38:1214–7.
Hossain SM, Blair R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Br Poult Sci 2007;48:33–8. https://doi.org/10.1080/00071660601156529.
van Huis A. Potential of insects as food and feed in assuring food security. Annu Rev Entomol 2013;58:563–83. https://doi.org/10.1146/annurev-ento-120811-153704.
Hussain M, Wilson JB. New paralogues and revised time line in the expansion of the vertebrate GH18 family. J Mol Evol 2013;76:240–60.
Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA, et al. Gut health and serum growth hormone levels of broiler chickens fed dietary chitin and chitosan from cricket and shrimp. Poult Sci 2019;98:745–52. https://doi.org/10.3382/ps/pey419.
Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki AZB. Haematological and biochemical analysis of broiler chickens fed chitin and chitosan isolated from cricket and shrimp EB Ibitoye, IH Lokman, MNM Hezmee, YM Goh, and AZB Zuki. 2018. Enhancing Poult Heal Prod Sustain Poult Ind N.D.:32.
Jackson S, Place AR, Seiderer LJ. Chitin digestion and assimilation by seabirds. Auk 1992;109:758–70.
Janssen RH, Vincken J-P, van den Broek LAM, Fogliano V, Lakemond CMM. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem 2017;65:2275–8.
Jeuniaux C, Cornelius C. Distribution and activity of chitinolytic enzymes in the digestive tract of birds and mammals 1997.
Jonas-Levi A, Martinez J-JI. The high level of protein content reported in insects for food and feed is overestimated. J Food Compos Anal 2017;62:184–8.
Khajarern JM, Khajarern S, Moon TH, Lee JH. Effects of dietary supplementation of fermented chitin-chitosan (FERMKIT) on toxicity of mycotoxin in ducks. Asian-Australasian J Anim Sci 2003;16:706–13. https://doi.org/10.5713/ajas.2003.706.
Khempaka S, Chitsatchapong C, Molee W. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J Appl Poult Res 2011;20:1–11. https://doi.org/10.3382/japr.2010-00162.
Kim B, Kim HR, Lee S, Baek YC, Jeong JY, Bang HT, et al. Effects of dietary inclusion level of microwave‐dried and press‐defatted black soldier fly (Hermetia illucens) larvae meal on carcass traits and meat quality in broilers. Animals 2021;11:1–12. https://doi.org/10.3390/ani11030665.
KOBAYASHI S, CHIBA E, TERASHIMA Y, ITOH H. Effect of dietary crude chitin on thyroid function in chicks fed a low iodine diet. Japanese Poult Sci 1996;33:73–9.
Kramer KJ, Hopkins TL, Schaefer J. Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 1995;25:1067–80.
Lindsay GJH, Gooday GW. Action of chitinase on spines of the diatom Thalassiosira fluviatilis. Carbohydr Polym 1985;5:131–40.
Loponte R, Nizza S, Bovera F, De Riu N, Fliegerova K, Lombardi P, et al. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res Vet Sci 2017;115:183–8. https://doi.org/10.1016/j.rvsc.2017.04.017.
M.M. I, C.-J. Y. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poult Sci 2017;96:27–34.
Marono S, Loponte R, Lombardi P, Vassalotti G, Pero ME, Russo F, et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult Sci 2017;96:1783–90.
Muzzarelli RAA, Muzzarelli C. Chitosan chemistry: relevance to the biomedical sciences. Polysaccharides I 2005:151–209.
Mwaniki Z, Shoveller AK, Huber L-A, Kiarie EG. Complete replacement of soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding program (28–43 wks of age): impact on egg production, egg quality, organ weight, and apparent retention of components. Poult Sci 2020;99:959–65.
Nation JL. Insect physiology and biochemistry. CRC press; 2008.
Razdan A, Pettersson D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br J Nutr 1994;72:277–88. https://doi.org/10.1079/bjn19940029.
Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Chitosan Biomater II 2011:19–44.
Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M, Madrid J, et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol 2017;8:1–9.
Simpson SJ, Douglas AE. The insects: structure and function. Cambridge University Press; 2012.
Świątkiewicz S., Świątkiewicz M., Arczewska-Włosek A., Józefiak D. Chitosan and its oligossaccharide derivates (chito-oligosaccarides) as feed supplements in poultry and swine nutrition. J Anim Phys Anim Nutr 2014, 99:1-12
Tabata E, Kashimura A, Kikuchi A, Masuda H, Miyahara R, Hiruma Y, et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep 2018;8:1–11. https://doi.org/10.1038/s41598-018-19940-8.
Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, et al. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci Rep 2017;7:1–11. https://doi.org/10.1038/s41598-017-07146-3.
Tolesa LD, Gupta BS, Lee M-J. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. Int J Biol Macromol 2019;130:818-826.
Tomberlin JK, Sheppard DC, Joyce JA. Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Ann Entomol Soc Am 2002;95:379–86.
Ushakova NA, Dontsov AE, Sakina NL, Ratnikova IA, Gavrilova NN, Garmash NY, et al. Melanin and melanogenesis at different life stages in Hermetia illucens. Biol Bull 2018;45.
Wang H, Rehman K ur, Feng W, Yang D, Rehman R ur, Cai M, et al. Physicochemical structure of chitin in the developing stages of black soldier fly. Int J Biol Macromol 2020;149:901–7. https://doi.org/10.1016/j.ijbiomac.2020.01.293.
Weiser JI, Porth A, Mertens D, Karasov WH. Digestion of chitin by northern bobwhites and American robins. Condor 1997;99:554–6.
Young DH, Köhle H, Kauss H. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol 1982;70:1449–54.