Genom ptaków a zdolność do lotu


Piotr Antos


Archiwum

Ptaki (Aves) są gromadą kręgowców (Vertebrata) liczącą ponad 11 000 znanych gatunków (IUCN, 2021). Charakterystyczną cechą ptaków, odróżniającą je od pozostałych gromad kręgowców, jest zdolność do lotu. Jednakże wśród ptaków około 1% (~100) gatunków nie posiada tej umiejętności. Wiadomym jest, że zdolność do lotu pochodzi od przodków ptaków – przypominających ptaki dinozaurów, których skamieniałości wskazują, że miały one wiele cech wspólnych z ptakami takich jak występowanie skrzydeł i piór, układ oddechowy z workami powietrznymi oraz stałocieplność (Xu i in., 2014; Sullivan i in., 2019).


Piśmiennictwo:

1.           Alerstam T., Rosén M., Bäckman J., Ericson P.G.P., Hellgren O. 2007. Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol. 5: e1971 – e1977.

2.           Alonso P.D., Milner A.C., Ketcham R.A., Cookson M.J., Rowe T.B. 2004. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430: 666 – 669.

3.           Andrews C.B., Gregory T.R. 2009. Genome size is inversely correlated with relative brain size in parrots and cockatoos. Genome 52: 261 – 267.

4.           Andrews C.B., Mackenzie S.A., Gregory T.R. 2009. Genome size and wing parameters in passerine birds. Proc. Biol. Sci. 276: 55 – 61.

5.           Axelsson E., Smith N.G.C., Sundstrom H., Berlin S., Ellegren H. 2004. Male-biased mutation rate and divergence in autosomal, Z-linked and W-linked introns of chicken and turkey. Mol. Biol. Evol. 21: 1538 – 1547.

6.           Bachmann K., Harrington B.A., Craig J.P. 1972. Genome size in birds. Chromosoma 37: 405 – 416.

7.           Costantini D., Racheli L., Cavallo D., Dell’Omo G. 2008. Genome size variation in parrots: longevity and flying ability. J. Avian Biol. 39: 453 – 459.

8.           Delany M.E., Daniels L.M., Swanberg S.E., Taylor H.A. 2003. Telomeres in the chicken: Genome stability and chromosome ends. Poult. Sci. 82: 917 – 926.

9.           Dial K.P., Biewener A.A., Tobalske B.W., Warrick D.R. 1997. Mechanical power output of bird flight. Nature 390: 67 – 70.

10.         Eden F.C., Hendrick J.P., Gottlieb S.S. 1978. Homology of single copy and repeated sequences in chicken, duck, Japanese quail, and ostrich DNA. Biochemistry 17: 5113 – 5121.

11.         Gallardo M.H., Bickham J.W., Honeycutt R.L., Ojeda R.A., Köhler N. 1999. Discovery of tetraploidy in a mammal. Nature 401: 341.

12.         Gallardo M.H., Bickham J.W., Kausel G., Köhler N., Honeycutt R.L. 2002. Gradual and quantum genome size shifts in the hystricognath rodents. J. Evol. Biol. 16: 163 – 169.

13.         Gipson P., Mills D.J., Wouts R., Grininger M., Vonck J., Kühlbrandt W. 2010. Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 107: 9164 – 9169.

14.         Gregory T.R. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76: 65 – 101.

15.         Gregory T.R. 2005. Genome size evolution in animals. [W:] The evolution of the genome. Red. T.R. Gregory. Elsevier, San Diego, CA. 3 – 87.

16.         Gregory T.R. 2008. Small genomes in pterosaurs too. Scientific Blogging.

17.         Gregory T.R., Andrews C.B., McGuire J.A., Witt C.C. 2009. The smallest avian genomes are found in hummingbirds. Proc. Biol. Sci. 276: 3753 – 3757.

18.         Harshman J., Braun E.L., Braun M.J., Huddleston C.J., Bowie R.C.K., Chojnowski J.L., Hackett S.J., Han K.L., Kimball R.T., Marks B.D., Miglia K.J., Moore W.S., Reddy S., Sheldon F.H., Steadman D.W., Steppan S.J., Witt C.C., Yuri T. 2008. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc. Natl. Acad. Sci. USA 105: 13462 – 13467.

19.         Heidinger B.J., Blount J.D., Boner W., Griffiths K., Metcalfe N.B., Monaghan P. 2012. Telomere length in early life predicts lifespan. Proc. Natl. Acad. Sci. USA 109: 1743 – 1748.

20.         Holmes D.J., Austad S.N. 1995. Birds as animal models for the comparative biology of aging: a prospectus. J. Gerontol. A Biol. Sci. Med. Sci. 50: B59 – 66.

21.         Hughes A.L., Piontkivska H. 2005. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol. Biol. 5: 12.

22.         ICGSC, International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695 – 716.

23.         IUCN 2021. The IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist.org. (dostęp 06.07.2021).

24.         Norberg U.M. 1995. How a long tail and changes in mass and wing shape affect the cost for flight in animals. Funct. Ecol. 9: 48 – 54.

25.         Olivecrona G. 2010. The crucial role of ATGL for energy supply of muscles. J. LipidRes. 51: 449 – 450.

26.         Opazo J.C., Soto-Gamboa M., Fernandez M.J. 2005. Cell size and basal metabolic rate in hummingbirds. Rev. Chil. Hist. Nat. 78: 261 – 265.

27.         Organ C.L., Shedlock A.M., Meade A., Pagel M., Edwards S.V. 2007. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446: 180 – 184.

28.         Padian K., Chiappe L. 1998. The origin and early evolution of birds. Bio. Rev. 73: 1 – 42.

29.         Pan S., Lin Y., Liu Q., Duan J., Lin Z., Wang Y., Wang X., Lam S.M., Zou Z., Shui G., Zhang Y., Zhang Z., Zhan X. 2019. Convergent genomic signatures of flight loss in birds suggest a switch of main fuel. Nat. Commun. 10: 2756.

30.         Primmer C.R., Raudsepp T., Chowdhary B.P., Moller A.P., Ellegren H. 1997. Low frequency of microsatellites in the avian genome. Genome Res. 7: 471 – 482.

31.         Roff D.A. 1994. The evolution of flightlessness: is history important? Evol. Ecol. 8: 639 – 657.

32.         Rosser B.W.C., George J.C. 1986. The avian pectoralis: histochemical characterization and distribution of muscle fiber types. Can. J. Zool. 64: 1174 – 1185.

33.         Smith J.D.L., Bickham J.W., Gregory T.R. 2013. Patterns of genome size diversity in bats (order Chiroptera). Genome 56: 457 – 472.

34.         Smith J.D.L., Gregory T.R. 2009. The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biol. Lett. 5: 347 – 351.

35.         Suarez R.K. 1992. Hummingbird flight: sustaining the highest mass-specific metabolic rates among vertebrates. Experientia 48: 565 – 570.

36.         Sullivan T.N., Meyers M.A., Arzt E. 2019. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5: eaat4269.

37.         Velleman S.G., McFarland D.C. 2015. Skeletal Muscle. [W:] Sturkie’s Avian Physiology. Red. C.G. Scanes. Academic Press. Waltham, MA: 379 – 402.

38.         Vinogradov A.E. 1995. Nucleotypic effect in homeotherms: body mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49: 1249 – 1259.

39.         Vinogradov A.E., Anatskaya O.V. 2006. Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc. R. Soc. B 273: 27 – 32.

40.         Wicker T., Robertson J.S., Schulze S.R., Feltus F.A., Magrini V., Morrison J.A., Mardis E.R., Wilson R.K., Peterson D.G., Paterson A.H., Ivarie R. 2005. The repetitive landscape of the chicken genome. Genome Res. 15: 126 – 136.

41.         Xu X., Zhou Z., Dudley R., Mackem S., Chuong C.M., Erickson G.M., Varricchio D.J. 2014. An integrative approach to understanding bird origins. Science 346: 1253293.

Bieżący numer