Bieżący numer

Archiwum

Aktywność olejku lawendowego w zestawieniu z enrofloksacyną
Michalina Adaszyńska-Skwirzyńsk1, Sławomir Zych

Celem badań była ocena aktywności przeciwbakteryjnej i oddziaływania olejku lawendowego (Lavandula angustifolia) z enrofloksacyną na wybrane szczepy wzorcowe Salmonella. Badanie oddziaływania enrofloksacyny z olejkiem lawendowym przeprowadzono metodą szachownicy (ang. checkerboard). Analizując poszczególne kombinacje enrofloksacyny z olejkiem lawendowym we wszystkich przypadkach stwierdzono efekt addytywny (S. enteritidis ATCC 13076 FIC – 0,8625; S. pullorum ATCC 13076 FIC – 0,7; S. typhimurium ATCC 14028 oraz S. typhimurium – szczep jednofazowy średnio wrażliwy FIC – 1,0). W żadnym przypadku nie stwierdzono oddziaływania antagonistycznego.
 
Literatura:
 
Adaszyńska M., Szczerbińska D. (2018). The antimicrobial activity of lavender essential oil (Lavandula angustifolia) and its influence on the production performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition, DOI: 10.1111 / jpn.12907.
Adaszyńska M., Swarcewicz M., Dzięcioł M., Dobrowolska A. (2013). Comparison of chemical composition and antibacterial activity of lavender varieties from Poland. Natural Product Research, 27, 1497–1501.
Clinical Laboratory Standards Institute. (2002). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard: M7-A6, vol. 23-n°2.
Hopkins K.L., Davies R.H., Threlfall E.J. (2005). Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. International Journal of Antimicrobial Agents, 25, (5): 358–373.
Hossain S., Heo H., De Silva B.C.J., Wimalasena S.H.M.P., Pathriana H.N.K.S., Heo, G.J. (2017). Antibacterial activity of essential oil from lavender (Lavandula angustifolia) against pet turtle-borne pathogenic bacteria. Laboratory Animal Research, 33, 3, 195–201.
Li J., Hao H., Cheng G., Wang X., Ahmed S., Shabbir M.A..B., Liu Z., Dai M., Yuan Z. (2017). The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella Typhimurium. Scientific Reports, 7: 11676.
Michael G.B., Schwarz S. (2016). Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Clinical Microbiology and Infection, 22, 12, 968–974.
Munita J.M., & Ariasa, C.A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4, 2, 1–37.
Moussaoui F., Alaoui F. (2016). Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pacific Journal of Tropical Biomedicine, 6, 1, 32–37.
Morales-Gutiérrez F.J., Barbosa J., Barrón D. (2015). Metabolic study of enrofloxacin and metabolic profile modifications in broiler chicken tissues after drug administration. Food Chemistry, 1, 172, 30–39.
Randall L.P., Cooles S.W., Coldham N.C., Stapleton K.S., Piddock L.J., Woodward M.J.(2006). Modification of enrofloxacin treatment regimens for poultry experimentally infected with Salmonella enterica serovar Typhimurium DT104 to minimize selection of resistance. Antimicrobial Agents Chemotheraphy, 50, 12, 4030–4037.
van Vuuren S., Viljoen, A. (2011). Plant-based antimicrobial studies. Methods and approaches to study the interaction between natural products. Planta Medica, 77, 1168–1182.
Veras H.N.H., Rodrigues F.F.G., Botelho M.A., Menezes I.R.A., Coutinho H.D.M., Costa J.G.M. (2017). Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arabian Journal of Chemistry, 10, 2, 2790–2795.
Yap P.S., Yiap B.Ch., Ping H.C., Lim S.H.E. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiology Journal 8, 6–14.